Trehalose-Based Block Copolycations Promote Polyplex Stabilization for Lyophilization and in Vivo pDNA Delivery
نویسندگان
چکیده
The development and thorough characterization of nonviral delivery agents for nucleic acid and genome editing therapies are of high interest to the field of nanomedicine. Indeed, this vehicle class offers the ability to tune chemical architecture/biological activity and readily package nucleic acids of various sizes and morphologies for a variety of applications. Herein, we present the synthesis and characterization of a class of trehalose-based block copolycations designed to stabilize polyplex formulations for lyophilization and in vivo administration. A 6-methacrylamido-6-deoxy trehalose (MAT) monomer was synthesized from trehalose and polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization to yield pMAT43. The pMAT43 macro-chain transfer agent was then chain-extended with aminoethylmethacrylamide (AEMA) to yield three different pMAT-b-AEMA cationic-block copolymers, pMAT-b-AEMA-1 (21 AEMA repeats), -2 (44 AEMA repeats), and -3 (57 AEMA repeats). These polymers along with a series of controls were used to form polyplexes with plasmids encoding firefly luciferase behind a strong ubiquitous promoter. The trehalose-coated polyplexes were characterized in detail and found to be resistant to colloidal aggregation in culture media containing salt and serum. The trehalose-polyplexes also retained colloidal stability and promoted high gene expression following lyophilization and reconstitution. Cytotoxicity, cellular uptake, and transfection ability were assessed in vitro using both human glioblastoma (U87) and human liver carcinoma (HepG2) cell lines wherein pMAT-b-AEMA-2 was found to have the optimal combination of high gene expression and low toxicity. pMAT-b-AEMA-2 polyplexes were evaluated in mice via slow tail vein infusion. The vehicle displayed minimal toxicity and discouraged nonspecific internalization in the liver, kidney, spleen, and lungs as determined by quantitative polymerase chain reaction (qPCR) and fluorescence imaging experiments. Hydrodynamic infusion of the polyplexes, however, led to very specific localization of the polyplexes to the mouse liver and promoted excellent gene expression in vivo.
منابع مشابه
Polyplex nanomicelle promotes hydrodynamic gene introduction to skeletal muscle.
Skeletal muscle is an interesting target for gene therapy. To achieve effective gene introduction in skeletal muscle, a hydrodynamic approach by intravenous injection of plasmid DNA (pDNA) with transient isolation of the limb has attracted attention. In this study, we demonstrated that polyplex nanomicelle, composed of poly(ethyleneglycol) (PEG)-block-polycation and pDNA, showed excellent capac...
متن کاملHybrid vector including polyethylenimine and cationic lipid, DOTMA, for gene delivery.
We developed polyethylenimine (PEI) lipopolyplexes with N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethlylammonium chloride (DOTMA) and pDNA to investigate their usefulness for in vitro and in vivo gene delivery. The charge ratio of the complex to pDNA was calculated with molar values of nitrogen of PEI, and nitrogen of DOTMA to phosphate of pDNA. The polyplexes were prepared at charge ratio 2 (poly...
متن کاملSustained transgene expression via citric acid-based polyester elastomers.
Polymeric scaffolds are an important tool in tissue engineering and gene delivery using porous scaffolds can be a viable approach to control tissue response. Herein we describe the use of a biodegradable polyester elastomer, poly(1,8-octanediol-co-citrate) (POC), as a substrate for plasmid immobilization and cellular transfection of colonizing cells. Plasmid (pDNA), either complexed with poly(e...
متن کاملDevelopment of lyophilized gemini surfactant-based gene delivery systems: influence of lyophilization on the structure, activity and stability of the lipoplexes.
PURPOSE Cationic gemini surfactants have been studied as non-viral vectors for gene therapy. Clinical applications of cationic lipid/DNA lipoplexes are restricted by their instability in aqueous formulations. In this work, we investigated the influence of lyophilization on the essential physiochemical properties and in vitro transfection of gemini surfactant-lipoplexes. Additionally, we evaluat...
متن کاملEvaluation of proinflammatory cytokine production induced by linear and branched polyethylenimine/plasmid DNA complexes in mice.
The purpose of this study was to evaluate the cytokine response induced by linear and branched polyethylenimine (PEI)/plasmid DNA (pDNA) complex (polyplex) in relation to the ratio of PEI nitrogen and DNA phosphate (N/P ratio) of the polyplex, dose of pDNA, and structure and molecular weight of PEI, which are important for transfection efficacy of PEI polyplex. As a control, a N-[1-(2, 3-dioley...
متن کامل